

離心泵能耗標準與節能技術方法

文/簡煥然、施澍育、鄭詠仁、沈宗福、盧江溪

摘要

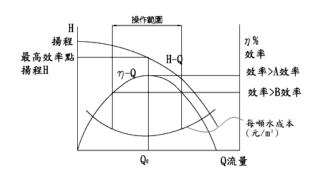
淨水場操作主要的動力來源為離心泵 浦,泵浦的使用若以生命週期成本來分析, 則大部分為電費使用為主,購置與維護成本 只佔小部分,所以購置泵浦時必須考慮是否 為高效率、長效型泵浦,將避免購買低價目 效率低的泵浦,節約了購置成本卻消耗了更 高的運轉電費。

本文擬介紹歐盟(EU)、中華民國(CNS) 的相關泵浦標準,並進一步探討在現場實務 上如何量測定頻泵浦的耗電功率與輸出流 功之關係,以此作為判別泵浦系統是否運轉 在合理效率區內,並介紹泵浦效率量測方法 與工具,今使用者即早判斷泵浦運轉是否效 能或劣化程度,避免運轉中泵浦長時間操作 在低效率的耗能狀況。

一、泵浦耗能與輸送成本

自來水公司去年(2011)的電費約在 14~15 億元,其中泵浦即佔用最大部分電 力,依據國際能源總署(IEA, International Energy Agency, 2006)研究,改善馬達系統可 提升用電效率 20%~25%, 故若自來水公司針 對泵浦進行系統節能的改善,每年潛在節約 電費約達數億元,在講求節能環保的今天, 為值得慎重研究的課題。

泵浦粗略可分為正位移式泵浦(positive displacement pump) 與離心泵浦(centrifugal pump),離心式泵浦具備流量大,且適用於 常壓及一般揚程,故在水源輸送上大量使

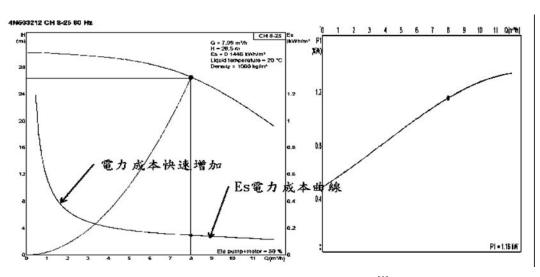

用。離心泵浦是利用葉輪的轉動把軸功傳遞 給液體造成流動,並由離心力提升輸出壓 力,使液體具有流功,而用來輸送液體的管 路系統需要壓力來克服管路磨擦阻抗與液 位高度差,使用者才能獲得所需的流量,流 體的流功也因此由管路的阻抗磨擦生熱而 消耗多數的流功。

評估泵浦能源效率的方法有數種,以功 率比較法或單位體積耗電法二種方法最為 方便且實用,泵浦的輸出流功(kW)是由泵浦 增加的全壓 (Nt/m²)與流量(m³/sec)的乘積再 除以1000,使用壓力計與流量計可以量測。 而馬達輸入電功(kW)可以直接由電源側用 功率計量測,當輸入電功(kW)除以輸出流功 就可以得到耗電功率比,而且同一管路用途 的泵浦可以直接比較,也就是輸出相同流功 下,所需的輸入電功愈低能源效率愈高。進 一步探討泵浦的效率與馬達效率,泵浦的效 率等於輸出流功(kW)除以輸入的馬達軸功 (kW),馬達效率等於輸出馬達軸功(kW)除以 輸入的電功(kW),但是在工作現場無法獲得 馬達軸功(kW),常常也就無法獲得精確的泵 浦整體效率。

使用者輸送流體的目的在所獲得流體 總量時,較佳的能源效率指標是使用單位體 積耗電法,就是將輸送流量乘以運轉時間計 算以獲得總輸送體積,馬達的耗電量是以千 瓦小時(kWh)計算,也就是馬達耗電功乘以 運轉時數,把耗電量除以總輸送體積就可以 獲得單位體積耗電量。使用者也可以進一步

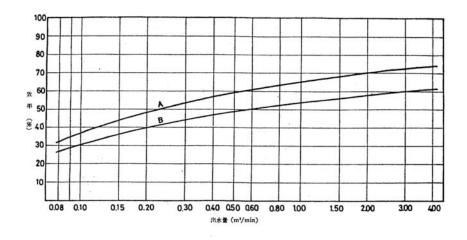
把每一度電的電費乘以耗電量, 由這樣簡單 的計算流體每噸體積的輸送成本。

以上二種方法都可以找到最低耗電功 率的泵浦,但泵浦的效率會受其比速率 Ns 影響而有不同的值,比速率等於轉速乘以流 量(m³/min)的開平方再除以揚程(m),其中揚 程(m)由全壓(Nt/m²)換算而得。如圖 1 顯示 泵浦的性能曲線中可以增加一條每噸水成 本曲線,其單位可以是(元/m³)或(kWh/m³), 也就是在 H-Q 曲線上每一點的每噸水成 本,操作範圍內為泵浦適用的運轉區域,範 圍外的每噸水用電成本均升高,如圖2所示 為泵浦廠提供的範例[1]包含每噸水所需的用 電度數,由電力成本曲線,可瞭解泵浦低流 量下電力成本將大幅度增加。另外,在輸送 過程中過高的管路阻抗也代表高昂的流體 輸送成本,評估過程中必須優先考量管路系 統的設計得到合理的管路阻抗,再根據阻抗 值與流量值訂定適用的泵浦與馬達規格。



泵浦的性能曲線

二、離心泵效率標準與使用


國際上已訂定相關的標準來規範泵浦 額定點效率與操作範圍效率,以提升各國能 源效率, 圖 3 為 CNS 2138 B4004 小型渦卷 型陸上清水離心泵效率,在額定流量下泵浦 的效率必須高於 A 效率值,而操作範圍的效 率必須高於額定流量下的 B 效率值。

歐盟在 2005 年推動的 Eup 指令^[3]將清水 離心泵列為第 11 項產品(Lot 11)[4,5],而此一 文件增加了效率-比速率 Ns-流量曲線的計算 公式的如下。

泵浦廠提供的每噸水耗電範例[1]

出水量 m³/min	0.08	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.8	1.0	1.5	2.0	3.0	4.0
A 效率%	32.0	37.0	44.0	48.0	53.5	57.0	59.0	60.5	63.5	65.5	68.5	70.5	73.0	74.0
B 效率%	26.3	30.3	36.2	39.4	43.9	46.7	48.4	49.6	52.1	53.7	56.2	57.8	60.0	60.7

圖 3 CNS 2138 B4004 效率規定[2]

 $\eta_{BOT} = -11.48 \, x^2 - 0.85 \, y^2 - 0.38 \, xy + 88.59 \, x + 13.46 \, y - C$

 $x = \ln (n_s)$ with n_s in $[min^{-1}]$ $y = \ln(Q)$ with Q in $[m^3/h]$ $Ns=rpm^*(m^3/sec)^{0.5}/(m)^{0.75}$

上式中的比速率之流量計算單位=m3/sec 但在計算效率時的流量計算單位=m3/hr

公式中的比速率定義 Ns = rpm* (m³/sec)^{0.5}/(m)^{0.75},式中的 C 值被整理成效率指 標值⁶¹,如表 1 所示,該表中的縮寫代號為 單級端吸泵(ES)/聯軸式單級端吸泵(ESOB)/ 直結式單級端吸泵(ESCC)/單級端吸管道泵 (ESCCI)/ 立式多級泵(MS)/ 沉水深井泵 (MSS)。表中 C 值是以市場中不合格比率 (cut-off)作為產品最低能效的基準,例如, C10%的值代表產品效率值在市場上的產品 只有10%的產品不合格,因此,歐盟於2008 年的工作會議^而建議歐盟市場先由 C10% 啟 動泵浦效率管制,未來在2020年的效率希望 都能達到 C80% 的水準,也就是泵浦效率值 將會提高將近 8%-9%, 例如由 70%提高為 79% •

歐盟在 2003 年推出泵浦指引®,其作法

是讓使用者更容易使用,使用簡潔的流量效 率曲線加上揚程修正係數,當製造商提供給 採購者一型泵浦的規格時,使用者首先比對 其最高效率點是否高於 optimum efficiency selections 曲線,類似 CNS A 效率曲線,若高 於此一曲線代表為高效率泵浦,若只高於 efficient selections 曲線,類似 CNS B 效率曲 線,代表泵浦效率仍可接受,若低於 efficient selections 曲線代表性能不佳不建議使用,而 使用者的操作點必須高於 efficient selections 曲線以確認泵浦都是運轉在合理效率範 圍,由於泵浦的效率受揚程影響很大,指引 中的修正係數C就是用來區別高揚程泵與低 揚程泵的效率,也就是使用者可以找到修正 係數 C 並由其 efficient selections 曲線值扣除 C值就是合理的最低效率值。

例如,製造商提供一個操作點流量 100cmh/揚程 130m/2900rpm/效率為 68%的 ESCC 泵浦,如何判斷是否符合高效率需 求, efficient selections 曲線值為71%, 理論上

高於製造商的 68%,另外查效率修正值 C 為 14.8%, 即需將 71%扣除 14.8%等於 56.2%, 即是製造商提供的產品是符合標準,在於 68%高於56.2%可接受泵浦效率,且製造商的 68%加上 14.8%等於 82.8%, 也高於建議值 71%,此例說明效率會因揚程而改變,不能 僅就流量就決定效率,各泵浦效率採用比速 率^[9]Ns 進行評估為較佳的方式。

有關沉水式深井泵的各國效率比較,可 根據各型產品規格訂出各種大小井徑的深 井泵單級規格由 P4 到 P12,如表 2 所示,根 據該表進行效率比較亦可得到結果,此處以 公制的比速率 Ns 為基礎比較了 CNS[11]、歐盟 C10%^[6]、中國^[10]的效率值,其中 CNS A、B 效率相對偏低,中國 A 效率相對較高。

			.,	794 -	71	•							
[Quantity cut-off											
	5%	10%	15%	20%	30%	40%	50%	60%	70%	80%			
C (ESOB 1450)	134.38	132.58	131.70	130.68	129.35	128.07	126.97	126.10	124.85	122.94			
C (ESOB 2900)	137.28	135.60	134.54	133.43	131.61	130.27	129.18	128.12	127.06	125.34			
C (ESCC 1450)	134.39	132.74	132.07	131.20	129.77	128.46	127.38	126.57	125.46	124.07			
C (ESCC 2900)	137.32	135.93	134.86	133.82	132.23	130.77	129.86	128.80	127.75	126.54			
C (ESCCI 1450)	138.13	136.67	135.40	134.60	133.44	132.30	131.00	130.32	128.98	127.30			
C (ESCCI 2900)	141.71	139.45	137.73	136.53	134.91	133.69	132.65	131.34	129.83	128.14			
C (MS 1450)	134.83	134.45	133.89	132.97	132.40	130.38	130.04	127.22	125.48	123.93			
C (MS 2900)	139.52	138.19	136.95	135.41	134.89	133.95	133.43	131.87	130.37	127.75			
C (MSS 2900)	137.08	134.31	132.89	132.43	130.94	128.79	127.27	125.22	123.84	122.05			

表 1 效率計算公式之 C 值[6]

表 2	沉水式深井泵的各國效率比較
-----	---------------

型號	單級 揚程 III	轉速 rpm	流量 m3/hr	CNS B效率 %	CNS A效率 %	中國 B效率 %	中國 A效率 %	流功1 kW	比速率 Ns	歐盟 C10% 效率
P4	6.6	3450	1	12.7%	24.7%	0.0%	0.0%	0.02	108. 16	19.5%
P4	6.6	3450	2	30.7%	30.7%	0.0%	0.0%	0.04	152. 97	35, 9%
P4	6.6	3450	3	29.0%	34.0%	40.0%	45.0%	0.05	187. 35	43.8%
P4	6.4	3450	5	33.3%	38. 3%	47.8%	52.8%	0.09	247. 51	52. 2%
P4	6.4	3450	8	37.0%	42.7%	54.0%	59.0%	0.14	313. 08	57. 7%
P6	14	3450	8	37.0%	42.7%	54.0%	59.0%	0.30	174.06	52.1%
P4	5	3450	10	38. 7%	44.7%	56.5%	61.5%	0.14	421. 23	59.4%
P6	15	3450	10	38, 7%	44.7%	56.5%	61.5%	0.41	184, 79	54.9%
P6	14	3450	14	41.0%	47.3%	59.3%	64. 3%	0.53	230. 26	60.3%
P6	13	3450	18	43,0%	50.0%	61.2%	66. 2%	0.64	276, 01	63, 5%
P6	13	3450	25	45.3%	53.3%	63.3%	68. 3%	0.88	325, 28	66.4%
P6	13	3450	33	48.0%	56.0%	65.0%	70.0%	1.17	373. 72	68.1%
P6	12	3450	45	50.5%	59.3%	66.7%	71.7%	1.47	463. 41	69.0%
P8	24	3450	45	50.5%	59.3%	66.7%	71.7%	2.94	275. 54	69.4%
P8	24	3450	60	53.0%	62.0%	68.0%	73.0%	3.92	318. 17	71.4%

型號	單級 揚程 11	轉速 rpm	流量 m3/hr	CNS B效率 %	CNS A效率 %	中國 B效率 %	中國 A效率 %	流功l kW	比速率 Ns	歐盟 C10% 效率
P8	22	3450	75	54.0%	63.5%	69.1%	74.1%	4.49	379.71	72.5%
P8	20	3450	90	55.0%	65.0%	70.4%	75.4%	4.90	446.78	72.6%
P8	18	3450	120	57.0%	67.0%	71.2%	76.2%	5. 88	558. 32	71.8%
P10	44	3450	60	53.0%	62.0%	68.0%	73.0%	7.19	201.94	68. 3%
P10	40	3450	75	54.0%	63.5%	69.1%	74.1%	8.17	242.51	71.2%
P10	36	3450	90	55.0%	65.0%	70.4%	75.4%	8. 82	287.50	73.1%
P10	32	3450	120	57.0%	67.0%	71.2%	76.2%	10.45	362.64	74.6%
P10	28	3450	160	58.3%	69.0%	72.3%	77.3%	12.20	462.84	74.5%
P10	28	3450	190	59.2%	70.2%	72.8%	77.8%	14.48	504.37	74.3%
P12	44	3450	160	58. 3%	69.0%	72.3%	77.3%	19.16	329.77	75.7%
P12	40	3450	190	59. 2%	70. 2%	72.8%	77.8%	20.69	385.99	76.0%
P12	38	3450	210	59.5%	70.5%	73.1%	78.1%	21.72	421.71	75. 9%
P12	36	3450	260	60.3%	71.3%	73.6%	78.6%	25.48	488, 66	75.5%
P12	34	3450	320	61.0%	72.0%	74.2%	79.2%	29.62	565.86	74.4%
P12	34	3450	360	61.0%	72.0%	74.6%	79.6%	33, 32	600, 19	73.9%

型號	單級 揚程 m	轉速 rpm	流量 m3/hr	流功1 kW	比速率 Ns	CNS B泵軸功 (kW)	CNS A泵軸功 (kW)	歐盟 C10% 軸功 (kW)	中國 B泵軸功 (kW)	中國 A泵軸功 (kW)
P4	6.6	3450	1	0.02	108.16	0, 14	0.07	0.09		
P4	6.6	3450	2	0.04	152. 97	0.12	0.12	0.10		
P4	6, 6	3450	3	0, 05	187. 35	0.19	0.16	0.12	0.13	0.12
P4	6.4	3450	5	0.09	247, 51	0, 26	0, 23	0, 17	0.18	0, 16
P4	6.4	3450	8	0.14	313.08	0.38	0.33	0.24	0. 26	0.24
P6	14	3450	8	0.30	174.06	0.82	0.71	0. 59	0. 56	0.52
P4	5	3450	10	0.14	421. 23	0.35	0.30	0. 23	0. 24	0.22
P6	15	3450	10	0, 41	184, 79	1, 06	0, 91	0, 74	0, 72	0, 66
P6	14	3450	14	0.53	230, 26	1.30	1.13	0.88	0.90	0.83
P6	13	3450	18	0.64	276.01	1.48	1.27	1.00	1.04	0.96
P6	13	3450	25	0.88	325, 28	1. 95	1.66	1, 33	1.40	1.30
P6	13	3450	33	1.17	373. 72	2. 43	2.09	1.71	1.80	1.67
P6	12	3450	45	1.47	463, 41	2, 91	2, 48	2, 13	2, 20	2, 05
P8	24	3450	45	2. 94	275. 54	5. 82	4.96	4. 24	4. 41	4.10
P8	24	3450	60	3, 92	318. 17	7. 40	6. 32	5. 49	5. 76	5. 37

型號	單級 揚程 III	轉速 rpm	流量 m3/hr	流功1 kW	比速率 Ns	CNS B泵軸功 (kW)	CNS A泵軸功 (kW)	歐盟 C10% 軸功 (kW)	中國 B泵軸功 (kW)	中國 A泵軸功 (kW)
P8	22	3450	75	4.49	379, 71	8, 32	7.07	6, 20	6. 50	6.07
P8	20	3450	90	4.90	446. 78	8. 91	7.54	6. 75	6. 96	6.50
P8	18	3450	120	5.88	558. 32	10.32	8. 78	8.19	8. 26	7. 72
P10	44	3450	60	7.19	201.94	13, 56	11.59	10, 52	10.57	9.84
P10	40	3450	75	8.17	242. 51	15, 12	12.86	11.46	11.83	11.03
P10	36	3450	90	8.82	287. 50	16.04	13.57	12.07	12.53	11.70
P10	32	3450	120	10.45	362. 64	18. 34	15.60	14.02	14.68	13, 72
P10	28	3450	160	12.20	462. 84	20, 91	17.67	16. 37	16.87	15. 78
P10	28	3450	190	14.48	504. 37	24. 48	20.64	19.48	19.89	18.61
P12	44	3450	160	19.16	329, 77	32, 85	27, 77			24, 80
P12	40	3450	190	20.69	385. 99	34. 97	29.49	27. 22		
P12	38	3450	210	21.72	421.71	36, 51	30, 81	28. 61	29, 72	27. 81
P12	36	3450	260	25.48	488.66	42, 23	35, 72	33, 76	34, 62	32. 42
P12	34	3450	320	29.62	565. 86	48. 55	41.14	39. 81	39. 92	37. 40
P12	34	3450	360	33. 32	600.19	54. 62	46. 28	45.10	44.66	41.86

三、馬達效率標準

歐盟為全球重視節能與環保議題的組 織,歐盟 CEMEP(European Committee of Manufacturers of Electrical Machines and Power Electronics)在 2007 年 9 月, IEC 發表了 IEC60034-2-1 取代了已公布 30 年的 IEC60034-2, IEC 技術委員會進一步針對 IEC60034-30 草案研擬與討論,主要將馬達重 新定義為 IE1、IE2、IE3 和 IE4 共 4 個等級(IE4

目前仍訂定中,IE3 效率最高),IE3 等級即 為美國的 NEMA(National Electrical Manufacturers Association)等級。2003 年由經 濟部標準檢驗局正式公告施行 "CNS 14400 低壓三相鼠籠型高效率感應電動機"標 準,相當 IE1 等級,有關 IE2、IE3 等級的 CNS 14400 效率標準修正建議案, 2011 年工 研院已提送標準局公開審查中,期望可與世 界標準接軌,其中 60Hz 馬達極數與效率等 級如表 3[12]。

表 3 IEC60034-30 60Hz 馬達極數 φ/效率%等級表

,										
功率				60Hz 馬達	達極數 φ/效	[率%等級				
kW		2 pole			4 pole		6 pole			
	IE1	IE2	IE3	IE1	IE2	IE3	IE1	IE2	IE3	
0.75	77.00%	75.50%	77.00%	78.00%	82.50%	85.50%	73.00%	80.00%	82.50%	
1.1	78.50%	82.50%	84.00%	79.00%	84.00%	86.50%	75.00%	85.50%	87.50%	
1.5	81.00%	84.00%	85.50%	81.50%	84.00%	86.50%	77.00%	86.50%	88.50%	
2.2	81.50%	85.50%	86.50%	83.00%	87.50%	89.50%	78.50%	87.50%	89.50%	
3.7	84.50%	87.50%	88.50%	85.00%	87.50%	89.50%	83.50%	87.50%	89.50%	
5.5	86.00%	88.50%	89.50%	87.00%	89.50%	91.70%	85.00%	89.50%	91.00%	
7.5	87.50%	89.50%	90.20%	87.50%	89.50%	91.70%	86.00%	89.50%	91.00%	
11	87.50%	90.20%	91.00%	88.50%	91.00%	92.40%	89.00%	90.20%	91.70%	
15	88.50%	90.20%	91.00%	89.50%	91.00%	93.00%	89.50%	90.20%	91.70%	
18.5	89.50%	91.00%	91.70%	90.50%	92.40%	93.60%	90.20%	91.70%	93.00%	
22	89.50%	91.00%	91.70%	91.00%	92.40%	93.60%	91.00%	91.70%	93.00%	
30	90.20%	91.70%	92.40%	91.70%	93.00%	94.10%	91.70%	93.00%	94.10%	
37	91.50%	92.40%	93.00%	92.40%	93.00%	94.50%	91.70%	93.00%	94.10%	
45	91.70%	93.00%	93.60%	93.00%	93.60%	95.00%	91.70%	93.60%	94.50%	
55	92.40%	93.00%	93.60%	93.00%	94.10%	95.40%	92.10%	93.60%	94.50%	
75	93.00%	93.60%	94.10%	93.20%	94.50%	95.40%	93.00%	94.10%	95.00%	
90	93.00%	94.50%	95.00%	93.20%	94.50%	95.40%	93.00%	94.10%	95.00%	
110	93.00%	94.50%	95.00%	93.50%	95.00%	95.80%	94.10%	95.00%	95.80%	
150	94.10%	95.00%	95.40%	94.50%	95.00%	96.20%	94.10%	95.00%	95.80%	
≥185	94.10%	95.40%	95.80%	94.50%	95.40%	96.20%	94.10%	95.00%	95.80%	

四、泵浦節能的實務做法

以往的使用者與製造商都分別針對馬 達與泵浦效率做驗收,但實務上仍存在一些 缺點,其中最大的缺點就是在工作現場無法 獲得馬達軸功(kW),亦即無法獲得精確的泵 浦效率及馬達效率,故使用者無法依賴泵浦 效率及馬達效率建立起有效的系統運作耗 能監控計畫;而在現場監測中量測輸入電功 與輸出流功其實是相對簡便且實用的數 據,非常有利於建立起有效的系統運作耗能 監控計畫,尤其針對泵浦或馬達因磨耗產生 性能衰減的問題。

最基本的概念即是直接監測輸出流功 與輸入電功並建立統計資料,例如耗電功-流功統計圖,再根據不同使用時數及階段記 錄出長期數據的劣化趨勢,由數據的變遷來 判斷機組是否有潛在耗能過高問題,以下針 對陸上泵與深井泵分別詳細說明。

根據 ISO 2858^[13]規格進行流功計算,並 分別參考各泵浦標準 CNS^[2]、GB^[10]、歐盟^[8]、 歐盟 C10% ©之泵浦效率即可獲得軸功,並且 引進 CNS 馬達效率[14]以獲得輸入電功。本文 的計算係以 CNS 馬達效率為基準,各國標準 的流功-電功比較之計算結果,如圖 4 所示, 以相同流功比較,圖中歐盟 A 效率所耗電功 最低, CNS B 效率所需電功為最高, 二者的 差異值可以高達 20%以上,顯示本國 CNS 的效率值要求確實過低。

依 ISO 2858 規格的資料進一步整理,以 額定點(rated point)流量為單位計算額定點的 每噸水成本,如圖5所示,發現低流量產品 的單位成本較高且揚程高低影響很大,效率 高低也直接反映在成本單價上,當資料以額

定點比速率 Ns 為單位計算額定點每噸水成 本,如圖 6 所示,發現低比速率 Ns 產品的 單位成本較高月高比速率 Ns 產品其單位成 本明顯下降,符合比速率 Ns 與效率的關係, 且相同比速率 Ns 流量大者會有更低的單位 成本。

由於深井泵為複數個葉輪與導葉組成 多級泵型式,因此無法像陸上清水泵一樣使 用固定功率的馬達來計算輸入電功,僅能以 各國標準的泵浦效率計算出單級軸功,此處 的泵浦規格係可參考各廠商規格訂定,參考 表 2 所示,做成單級軸功比較圖,如圖 7 所 示,在相同輸出單級流功下,中國 A 效率的 單級軸功最低而 CNS B 效率的單級軸功最 高,歐盟 C10%的單級軸功稍高於中國 A 效 率的單級軸功,此一單級軸功統計圖將有助 於使用者採購泵浦的參考。

在泵浦運轉階段時,針對流功-耗電功的 管理,可於管路裝置上考慮增設壓力表與流 量計,輸入電力的量測工具也須包含量測輸 入功率之功能,以正確評估耗電功。單純的 電流評估方式常受電壓高低的影響,缺乏正 確的流功值作為比較基礎,對效率容易造成 誤判。

以下為泵浦節能實務管理上的參考做 法:

(一)建立單級泵浦的效率-比速率 Ns 統計與 管理

用比速率 Ns 評估製造商的技術優劣, 評估範圍包含全系列產品,測試數據必須以 至少3級以上且全尺寸葉輪外徑的泵浦進行 測試,最後數據可以依據口徑來建立效率-比速率 Ns 管制圖,如圖 8 所示,並以平均

效率曲線做為新採購案的效率基準。

(二)建立現有泵浦的流功-電功統計圖

使用者可針對廠內的泵浦進行流功-電 功數據的紀錄監測,並建立平均耗能曲線, 當泵浦磨損之後流功-電功數據將會落在高 耗能區,使用者容易判斷泵浦能源效率是否 低下並決定是否維修或更新,如圖9所示, 而此一數據也可以作為採購新品的參考,並 請供應商在出廠驗收試驗報告中增列流功

各國標準的流功-電功比較

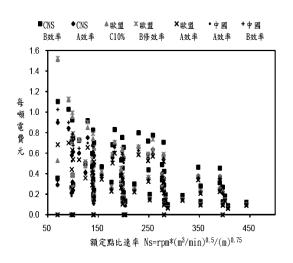


圖 6 額定點比速率每噸水成本比較

與耗雷功數據。

(三)運轉中泵浦的耗能監控

使用者在監控運轉中泵浦時,常以需求 水量與耗電流來判斷泵浦的磨耗情況,正常 磨耗的泵浦其輸出流功的減少量會大於輸 入電功的減少量,而非使用者習知的合理範 圍,如圖 10 所示,即是使用者必須定期檢 查泵浦的運轉數據,並確認泵浦耗能的合理 性。

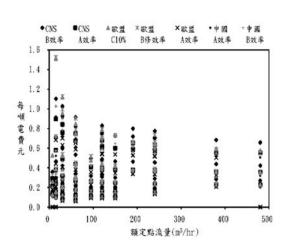
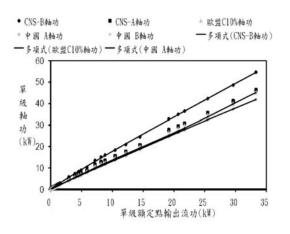



圖 5 額定點流量每噸水成本比較

單級額定點流功與軸功比較 圖 7

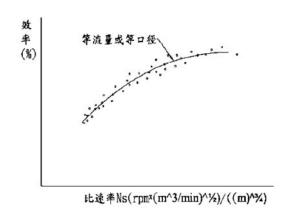


圖 8 比速率 Ns-效率管制圖

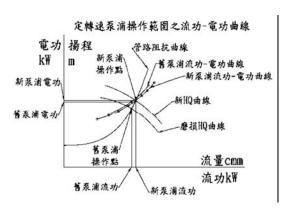
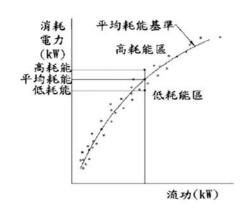



圖 10 新舊泵浦定轉速流功與電功關係

五、管路系統節能的實務做法

- (一)阻抗曲線計算:自來水供水負載的變動 是隨季節時間、隨用戶人數的變動而變 化,系統阻抗曲線的變動可以正確描述 這種負載變動,其中的關鍵在於系統阻 抗曲線的量測與正確計算,由於自來水 的管網系統較為複雜,本文謹以一簡單 閉迴路管路進行說明,如圖 11 所示,其 中阻抗曲線的計算法如下:
- 1.量取出入口壓力、流量
- 2.計算流量轉換成流速(m/sec)
- 3.轉換壓力單位(Nt/m²)錶壓力: P(kg/cm²)
- 4.計算揚程損失 HL=泵浦輸出揚程 Ht
- 5.設定系統淨高 C。, 須考慮 U 形管效應
- 6. 將 H_L(m)帶入以下公式、C₂ 與 Q (m³/ min), 計算 C1 值

 $H_L(m) = C_0 + C_1 * Q(m^3/min)^2 - - - - 公式$

泵浦能源效率判斷示意圖

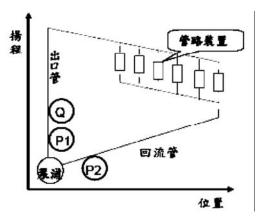
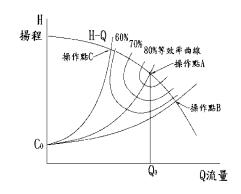


圖 11 簡單閉迴路管路示意

- 7.建立系統阻抗曲線
- 8.輸入 O(m³/min)計算 H_L(m)
- 9.依據 O(m³/min)與 H_L(m)重新選擇泵浦規格
- (二)操作點評估:許多的泵浦在安裝完成後 並沒有再精確測試與分析,使得泵浦是 否能在期望的操作點運轉無法而知,如 圖 12 所示,操作點的評估說明如下:
- 1.操作點 A 是最佳的操作點
- 2.操作點 B 是在大流量低揚程區域,代表管 路為低阻力管路系統,增加管路系統阻抗 曲線,使操作點 B 移向操作點 A,可大幅 降低運轉耗能。
- 3.操作點 C 代表管路為高阳力管路系統,降 低管路系統阻抗曲線,使操作點 C 移向操 作點 A, 可大幅降低運轉耗能。
- 4.或是操作點 B 與操作點 C 重新選用正確規

格的泵浦,以操作在操作點A

- (三)案例說明:在許多管路系統節能評估的 案例中,發現只有少數的泵浦運轉在高 效率區,多數是需要重新選用適合的泵 浦才能得到節能效果,其原因在於系統 設計之初無法正確評估系統阻抗曲線, 也導致選用的泵浦規格無法正確操作在 高效率的原因,故針對現有系統的節能 改善方案必須同時考慮管路與泵浦規格 的改善,如圖 13 所示,該案例為現有管 路系統阻抗過高,調整的細部說明如下:
- 1.管路曲線 A 是原有系統。
- 2.當產能要由流量 Q1 的操作點 A 增加到流 量 O2 時的操作點 C 時, 泵浦揚程必須大 幅提高,即由A泵浦改成C泵浦,C泵浦 會比 A 泵浦大幅增加揚程與軸功率。
- 3.當管路系統修正成管路曲線 B,代表管路 阻力大為降低。
- 4. 當選用 B 泵浦, 在管路曲線 B 的操作點 B 代表 B 泵浦在較低的揚程下,也可以獲得 需要的流量 Q2, 這時 B 泵浦的功率比 A 泵浦高但低於 C 泵浦。
- 5.同時兼顧降低管路系統阻抗曲線與泵浦性 能將可大幅降低運轉耗能。


七、結語

根據以上針對離心泵能耗標準與節能 計算的介紹,以下幾點結論供參考:

- (一)以生命週期評估,泵浦的成本大部分為 雷費,購置與維護成本只佔小部分,所 以購置泵浦時必須考慮是否為高效率、 長效型泵浦,避免購買便官的泵浦卻浪 費更多操作電費。
- (二)流功-電功曲線為可靠有效的監測方 法,可正確監控運轉耗能與泵浦磨損狀 况。若於採購合約中泵浦驗收工作最好

應包含現場量測操作範圍內的流功-電 功曲線,並做為未來營運耗能監控的參 考數據。

高效率泵浦 VS. 低能源效率泵浦

低能源效率的風險---管路阻抗曲線計算的不確定 圖 12 泵浦操作點與效率分佈關係

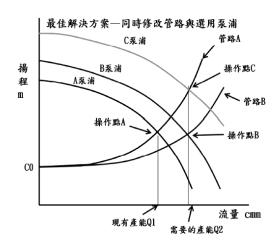


圖 13 同時考慮管路與泵浦規格改善關係

- (三)單級流功-電功曲線必須在完成現場測 試驗收完成後記錄,尤其深井泵的整機 在操作範圍內的流功-電功曲線測試完 成後,須再除以級數才可以得到單級流 功-電功曲線,以做為未來採購時預估泵 浦電力需求及評估耗能的參考。
- (四)採購合約中泵浦驗收工作,較佳的方式 需包含現場管路系統阻抗曲線量測,作 為確認泵浦操作點是否在高效率區的依 據,並做為未來擴大產能時管路設計變 更的參考依據。
- (五)耗能管理應列入日常管理的一環,尤其

管路系統負載變動時,必須記錄不同負 載下的管路阻抗曲線,計算泵浦在變動 負載下的流功-耗電功值並進行分析,始 能達成節能目標。

參考文獻

- 1.CH離心泵型錄,葛蘭富泵浦,Grundfos公司
- 2.CNS 2138 B4004 小型渦卷泵
- 2005/32/EC 3.Directive of the European Parliament and of the Council of 6 July 2005 establishing a framework for the setting of requirements ecodesign for energy-using products and amending Council Directive 96/57/EC 92/42/EEC and Directives 2000/55/EC of the European Parliament and of the Council
- 4.Lot 11 Water Pumps (in commercial buildings, drinking water pumping, food industry, agriculture) final, AEA Energy & Environment, 2008
- 5.Lot 11 Classification of Circulators final, AEA Energy & Environment, 2008
- 6.A method to define a minimum level of pump efficiencies based on statistical evaluations, Technical University Darmstadt, 2008
- 7. Meeting of the Ecodesign Consultation Forum, 27,28,29, May 2008
 - Annex 2: Working document on possible eco design requirements for single stage end suction, vertical multistage and submersible multistage pumps
 - Annex 2: Working document on possible ecodesign requirements for 0.75-200(370) kW electric motors
 - Annex 2: Working document on possible ecodesign requirements for standalone glandless circulators

- http://ec.europa.eu/energy/efficiency/ecodesign/f orum en.htm
- 8. European guide to pump efficiency for single stage centrifugal pumps May 2003
- 9. Alexey J. Stepanoff, Centrifugal and axial flow pumps: theory, design, and application, Wiley, 1948
- 10. GB 19762 清水離心泵能效限定值及節能評 價值
- 11.CNS 11327 B4064 深井用沉水電動機泵
- 12.離心式泵耗能標準與節能實務簡報,2010.11 , 簡煥然、鄭詠仁、沈宗福、盧江溪
- 13.ISO 2858 End suction centrifugal pumps (rating 16 bar)-Designation, nominal duty point and dimensions
- 14. CNS 14400 C4482 低壓三相鼠籠型高效率感 應電動機(一般用)

作者簡介

簡煥然 先生

現職:協磁股份有限公司技術顧問、煜然有限公司研 發經理

專長: 泵浦技術、智權研發

施澍育 先生

現職:自來水公司工務處 處長

專長:水處理技術

鄭詠仁 先生

現職:工研院機械所先進機械技術組 經理

專長:馬達系統節能技術

沈宗福 先生

現職:工研院機械所先進機械技術組 工程師

專長:馬達系統節能技術

盧江溪 先生

現職:工研院機械所先進機械技術組 副工程師

專長:馬達系統節能技術